Chapter 6.6: Moment Distribution Method
“Moment Distribution Method”

1. Stiffness, K – the amount of force/moment necessary to produce a unit displacement/rotation.

 Absolute Stiffness = $\frac{4EI}{L}$ *Prismatic

 Relative Stiffness = $\frac{I}{L}$

 * K for overhang is always zero
“Moment Distribution Method”

2. Distribution Factor, DF – a value which determines the appropriate amount of moment to be distributed to a member.

\[
DF = \frac{K}{\sum_{jt} K}
\]

Where: K – stiffness of the member

$\sum_{jt} K$ – sum of stiffness of all members meeting at a joint

* DF for hinge/roller = 1, for fixed support = 0
“Moment Distribution Method”

3. Carry-Over Factor, **COF**

 For prismatic members: **COF = 1 / 2**

4. Fixed-End Moments, **FEM** – moments developed at the ends of a member due to applied loads considering the beam is fixed at both ends.

 For overhangs: No need to assume fixed End

5. Distributed Moment, **DM**

 \[
 DM = (\sum_j t_j M)(-DF)
 \]

 \[
 CO = \frac{1}{2} (DM)
 \]

 \[
 FM = \sum FEM + \sum CO + \sum DM
 \]

 Counterclockwise positive
“Fixed-End Moments (FEM)”

\[\omega \frac{L^2}{12} + \omega \frac{L^2}{12} \]

Sign Convention: Counterclockwise Positive
“Fixed-End Moments (FEM)”

Sign Convention: Counterclockwise Positive

\[+\frac{Pab^2}{L^2} \quad \text{and} \quad -\frac{Pa^2b}{L^2} \]
“Fixed-End Moments (FEM)”

*Sign Convention: Counterclockwise Positive

\[+\omega L^2/30 \quad -\omega L^2/20 \]
“Fixed-End Moments (FEM)”

→ Use Double-Integration Method to get FEM

*Sign Convention: Counterclockwise Positive
Example 1:

Determine the reactions at the supports.
Example 1:

Determine the reactions at the supports.